1. Гетерогенная кристаллизация и модифицированные структуры закристаллизованного металла. Вторичная кристаллизация и ее механизмы. На диаграмме состояния систем железо-углерод укажите линии и точки, связанные с протеканием процессов вторичной кристаллизации.
2. Опишите явление полиморфизма на примере кобальта. Как различаются строение, характеристики кристаллической решетки (размеры, координационное число, плотность упаковки и др.) и свойства Соα и Соβ.
3. Организационная-техническая классификация технологических процессов (по степени унификации, применению, детализации и др.).
4. В условиях крупносерийного производства необходимо изготовить станину технологической установки из чугуна ВЧ42-12. Предложите и обоснуйте наиболее эффективный метод изготовления заготовки.
Список использованных источников
В реальных условиях процессы кристаллизации и характер образующейся структуры в большей мере зависят отимеющихся готовых центрах кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется гетерогенной или несамопроизвольной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы. Образование зародышей на имеющейся в расплаве поверхности раздела — стенке сосуда или частицах нерастворимой примеси (подложке) — может произойти, если эта поверхность смачивается жидким металлом. В этом случае образование зародышей на ней потребует меньшей затраты энергии. В связи с этим краевой угол между подложкой и находящимся на ней зародышем твердой фазы имеет важное теоретическое значение, хотя это и не может быть широко использовано на практике. Если краевой угол мал, то поверхностная энергия границы раздела между твердой фазой и подложкой также мала. В этом случае из атомов жидкого металла легко образуются зародыши твердой фазы на поверхности подложки. Эффективность любой частицы как катализатора зарождения зависит от краевого угла, который в свою очередь определяется такими факторами, как близость структур кристаллических решеток подложки и твердой фазы и химическая природа поверхности подложки. Если краевой угол мал, то зарождение происходит при незначительном переохлаждении, если же краевой угол велик, то необходимо большее переохлаждение.
Большинство применяемых в промышленности металлов содержит достаточное количество различных нерастворимых примесей, и зарождение кристаллов в расплавах этих металлов происходит при переохлаждениях 1 — 10° С. Если количество имеющихся в жидком металле нерастворимых примесей недостаточно для эффективного развития процессов гетерогенного зарождения, в расплав могут быть введены так называемые катализаторы зарождения.
Катализаторы зарождения — это вещества, которые намеренно вводятся в жидкий металл для стимулирования процессов образования зародышей. Эти вещества могут быть соединениями, нерастворимыми в расплаве и имеющими с образующейся твердой фазой малый краевой угол; они могут быть также и химическими элементами, которые, реагируя с жидким расплавом, образуют соединения, способствующие развитию процессов зарождения. Как правило, механизм действия катализаторов в расплавах конкретных металлов бывает заранее неизвестен, и на практике катализаторы подбираются методом проб и ошибок.
1. Гормаков А.Н. «Материаловедение. Учебно-методическое пособие». – Томск.: ТПУ, 2003
2. http://www.e-reading-lib.org
3. http://www.ai08.org
4. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 414. — 671 с. — 100 000 экз.
5. Гамбург Ю.Д. Электрохимическая кристаллизация металлов и сплавов. М.: Янус-К. 1997. 384 с.
6. http://society.polbu.ru